
A Rule Driven Bi-Directional Translation System for Remapping Queries and
Result Sets Between a Mediated Schema and Heterogeneous Data Sources

R. Shakerl, P. Mork, M.S.2, M. Barclayl, P. Tarczy-Homoch, M.D. 1,3
lPediatrics, 2Computer Science & Engineering and 3Biomedical & Health Informatics

University of Washington, Seattle, WA
As the number of online biomedical data sources
increases, so too do the number of ways to access
such data. The research described herein focuses on
creating a data access system that provides bi-
directional translation and mapping of data between
heterogeneous databases and a mediated schema.
Semantic mapping rules stored in a knowledge base
are used by our generalized software to convert
XML query results obtainedfrom each data source to
a common schema representing a single ontology.
We apply this approach to the domain of online
genetic databases, demonstrating the system 's
scalability and integratability.

INTRODUCTION
There is currently no universally adopted standard for
representing, storing and accessing the growing
repository of public biomedical information. Though
sequence, structure and function databases are often
readily accessible via the Internetl, the investment of
time and expertise required to locate, aggregate and
search these data sources is increasing. A common
language for querying the contents of heterogeneous
biomedical databases is greatly needed.

BACKGROUND
By developing a simplified ontology to describe the
subset of data we wish to examine, and by creating a
mediated schema based on that ontology that can act
as our guide for posing queries against the realm of
interest, we will demonstrate that distinct and
separate data sources can be accessed using a single
homogeneous view. Previous work by our group has
centered on using the mediated schema and Tukwila
engine to formulate query plans for accessing a
heterogeneous set of online genetic databases2.
The goal of this paper is to present a back-end data
access system that complements that work and
provides a single point of entry for answering queries
against a sizable body of distinct but related data. It
is our goal to provide a homogeneous view and allow
for the querying of heterogeneous data sources, while
filtering out the irrelevant data with which it may be
interwoven. The solutions proposed here are not
specific to the medical or genetic database
community, but can be generalized to any set of
online and queryable information for which a
common ontology can be constructed.

Our system offers benefits over existing genetic data
integration techniques. For example, local
warehousing of data sources is not a requirement.
Unlike solutions such as BioKleisli3, our system
provides a simple language for querying and
combining data sources. Instead of relying on
complex queries and the construction of virtual
views, our data access system models only the shared
entities from each source. By doing so, we present to
the end user a simplified schema encompassing only
the ontology in which they're interested. The
mediated schema, rather than a view, dictates what
data is made accessible to the query.

In contrast to systems such as PharmGKB4, we use
our mediated schema to perform queries across
distributed databases while their approach pulls data
into a central repository. Our model also provides a
generalized interface system to diverse (not just
relational) sources and can access sources even if
underlying tables are not directly accessible.

REQUIREMENTS & APPROACH
Before beginning development of our data access
system, we established a basic set of requirements.
The system must be integratable, maintainable,
extendable, scalable and efficient. Ease of
integration makes the system accessible to other
front-end query tools. To facilitate maintainability,
we rely on external configuration parameters thus
decreasing the required amount of skilled
programmer support. Extensibility is important for
the addition and support of additional data sources.
Scalability and efficiency make this more than a
demonstration project, and facilitate its eventual use
and reliance in a production environment.
Integratability: To simplify integration of this
system with other applications, we adopted a simple
and generalized API. By limiting the input query
parameters to a single URL, interfacing with the
back-end engine is relatively simple. By returning
result sets in the form of a valid XML5 document, the
process of describing and parsing expected output is
straightforward. As a whole, the simplified API and
development tools chosen for this system facilitate
both language and platform independence.
Maintainability: To make the system more
maintainable, we constructed generalized and

AMIA 2002 Annual Symposium Proceedings 692

modular solutions wherever possible. We use a two
tier back-end: 1) data acquisition and 2) data
translation. The data acquisition tier pulls data from
remote sources and transforms it into a common,
XML-based syntax while preserving original
semantics. The data translation tier ("metawrapper")
performs the semantic transformation. By creating
this division in processing, we find that it is possible
to construct a single and re-usable application to
perform all data translation tasks.
The metawrapper performs a semantic transformation
of each data source from its heterogeneous schema to
the mediated schema. This conversion to a common
schema allows query engines such as Tukwila to
perform complex tasks such as joining result sets
across multiple heterogeneous sources.
Transformation between data source space and
mediated schema space is driven by a set of semantic
mapping rules. These rules are stored externally to
the metawrapper application in a Protege6 knowledge
base. This storage of mapping rules means that no
code changes to the metawrapper are required when
an ontology and its mediated schema change, or
when the output from a remote data source changes.
By separating the data acquisition ("wrapper")
component from the rest of the system, we facilitate
adding, removing and modifying the applications that
provide physical access to the individual data
sources. This set of applications performs a simple,
syntactic translation of source data into a common
XML intermediate. This intermediate format is what
is fed back to the translation layer. When the data
source output formats change, wrappers must be
updated to accept the new input formats. See Figure
1 for a depiction of the interactions between the
query formulator, the metawrapper and the wrappers.

Query ° Result

URL rrm XML

RDBMS
Loc MUDam

Figure 1: Translation Process
Extensibility: The two-tier model also facilitates
extensibility by allowing wrappers to be written and
unit tested before integration with the rest of the
systenm The use of a simplified API between
wrappers and metawrapper enables programmers to
use any language suitable for wrapper construction.
In essence, any Web-based application that can be

called via a URL and returns valid XML output can
be used as a wrapper.

Scalability: All components are essentially
standalone, with only the metawrapper requiring
access to externally stored mapping rules. Multiple
instances of each component may be deployed to
multiple servers. Use of a Web interface provides the
potential for future load balancing.
Efficiency: Because the data access engine is
intended for use by real-time query engines, response
time is of major importance. We address the engine's
speed by internally and externally parallelizing as
much of the process as possible. Internally, each
wrapper is designed to return intermediate query
results as soon as they are available. Externally, the
metawrapper is designed to begin processing wrapper
output before receiving the entire data stream.
In addition to the points already discussed, we
weighed the relative advantages of local versus
remote data storage. Our data access system is
designed with the explicit goal of integrating remote
data sources into a single view; however, there
sometimes exist overriding reasons for co-locating
the data source and access system together.

DESIGN & IMPLEMENTATION
Development Tools: The metawrapper and wrapper
components of our system are implemented using
Java. Some supporting utilities, such as those used to
download and maintain local copies of the
aforementioned data sources, are written using a
variety of shell scripting languages. Additional class
libraries worth noting include ORO Software's
PerlTools and the SAX7 XML parser. Metawrapper
and wrapper servlets are accessed through an Apache
Web server. Both tiers are hosted by the Jakarta
Tomcat servlet engine under Redhat Linux running
on Intel x86 hardware.
Protege has been used to model our ontology and
mediated schema2. All mapping rule sets are stored
in Protege's knowledge base and accessed on the
local machine via provided class libraries. Locally
stored data sources are housed by both Oracle and
Postgresql. Connectivity between the wrappers and
databases is accomplished using JDBC.
Forward and Reverse Mapping Rules: The core of
the translation system is a set of forward and reverse
mapping rules that drives the semantic translation
process. Reverse mapping rules (RMR) convert data
source result sets to mediated schema result sets.
RMR are also used by the query formulator to
determine what information is returned from a given
data source and how to parse the XML produced by
the metawrapper. Forward mapping rules (FMR) are

693

used to convert mediated schema queries to queries
against a particular data source. FMR are also used
by the query formulator to determine what
parameters may be used to query a particular data
source for each entity type. FRM provide
information to the query plan formulator that's
necessary for cross-source joins.
Reverse Mapping Rules: There are three types of
reverse mapping rules: 1) trigger rules, 2) replication
rules, and 3) linkage rules. During the translation
process, rule types are applied in the order listed.
Trigger rules direct the creation of mediated schema
entities. Trigger rules specify an XML path and
corresponding entity type. Each time an XML node
is traversed, its pathname is evaluated. If the
traversed pathname in the data source XML matches
that of a trigger rule, then a mediated schema entity
of the corresponding type is created. For example,
rule $A(pheno):=omim/disease calls for the creation
of an entity of type "pheno" anytime a node with
pathname '/omim/disease" is traversed.
Replication rules direct the grouping of data and
population ofnewly created entities. Replication
rules specify both a source and destination XML
pathname. Data is copied from a source pathname in
the wrapper XML output to a destination pathname in
the metawrapper XML output. Replication rules may
also be used to define temporary variable storage.
Linkage rules are applied last and are used to
establish interrelationships (or "edges") between
mediated schema entities. Each entity created by the
metawrapper is assigned a unique identifier which is
stored in the form of an XML root node attribute
called "XID". Linkage rules direct the addition of
references from one entity to another based on certain
constraints. For example, the OMIM rule
$A/pheno2gene($$Al)->$B($$Bl) causes the
creation of a link from each entity of type $A to each
entity of type $B where $$Al = $$B1. Note that
$$Al and $$Bl are temporary variables defined
during replication.
Figure 2 illustrates a simple set of mapping rules.
This example shows a subset of the rules for OMIM
that were developed by our group. Note the
normalization of data between wrapper and
metawrapper output, as <gene> records are extracted
from their parent <disease> records and are used to
create separate entities.
Forward Mapping Rules: There is only one type of
forward rule, and it is used to re-write the query URL
sent to the metawrapper. Forward mapping rules
describe the type and minimum number of input
parameters necessary to query a data source for a
particular entity type. For example, the GO rule

Gene: (1 of {name}, 2 of {src/id, src/db})} states that
either a single {name} or {id, db} pair is required in
order to post a query to the GO wrapper when
searching for matching entities of type "Gene".
All mapping string information is stored within the
Protege knowledge base. Access to the rules is
achieved via Prot6ge's Java API. One set of reverse
mapping rules and one set of forward mapping rules
exists for each entity in our mediated schema.
Metawrapper Output:

<phmo xI1>
canueBmtCamer, Type lcluum>

4d 13705<Ad>
ctbronhinecdb~

c/source>
cphbeo2ge xid=2>

<S_w xid2>
uBRCAAR/namne

<kcbas17q21Rocus>
<Source>
<i> 13705<idb
<db>omim4db>

</gaO
.qqe>

Wrapper Output:

<mni>I 13705Wnmi
<ide>Brewt Cucer, Type lcAiiIs

-aamwBRCAFc/v>I
<1ocuS17q21I4ocou>

Mapping Rules Applied:
SA(phmo):.onthWdiseuc
$SAI:=SA/mim
/na=$A/bide
/swrcAd4AI
/sowedb."onm
$B(gme):omiseainc/ge. _
SSBI:=SSAI
mSBhuamm

/AocusBMocus
/source/* SB I
/hoce/dbWouin
SA/pheo2gsa(SSAI)->SB($$BI)

Figure 2: Application of Mapping Rules
Wrappers: Wrapper construction is source specific
and each may differ considerably in design. One API
requirement for a wrapper is that it produce a valid
XML document which can readily be mapped from
source to mediated schema using some set of reserve
mapping rules. The other requirement is that each
wrapper accept a URL containing supported query
parameters. In the event that a data source is
unreachable, the wrapper returns an error message
and terminates gracefully.
Wrappers can be designed to return more information
than is supported by the mediated schema (MS).
Information not referenced within RMR is simply
ignored and discarded by the metawrapper. Since
data sources are sometimes referenced by multiple
ontologies, engineering a single wrapper to return the
information required by all of those ontologies
facilitates wrapper re-use across multiple MS.
Metawrapper: The metawrapper is responsible for
semantic conversion of inbound queries and
outbound result sets. Similar to how a human
translator provides intermediary communication
between two foreign speakers, the metawrapper
brokers questions and answers between the query
formulator and a specific data source wrapper. The
design of the metwrapper's internal parser is
generalized enough to allow re-use by all currnet and
future wrappers. Externally loaded mapping rules are
used to reconfigure the parser at runtime. This
allows one version of the metawrapper to provide
translation of any supported data source. This

694

approach bears resemblance to parser generator tools
such as YACC (Yet Another Compiler Compiler)8.
The metawrapper accepts as input a single URL. The
URL contains query parameters phrased in terms of
the mediated schema. The metawrapper examines
the URL and decides to which data source to retarget
the query. It then applies the appropriate FMR and
translates the query to a format compatible with the
wrapper's API. The URL is then passed to the
wrapper which responds by generating an XML
document containing query results. The resulting
XML document is parsed and processed by the
metawrapper. RMR are applied to the XML
document to convert it from source to mediated
schema format. The converted query results are then
returned to a client such as Tukwila.

L - .ato ...-----UIU1 ---

L MMdiledL_)D XML

Figure 3: Threaded Processing
The metawrapper's generalized design supports reuse
by any number of ontologies, essentially any
mediated schema and data source combination who's
relationship can be represented by our RMR syntax.
It is architected using a "pseudo-compiler"
approach8. By that we mean that the result set
translation process is broken into five distinct phases
(see Fig. 3): 1) tokenization, 2) parsing, 3)
instantiation, 4) linkage and 5) emission. Each phase
of processing within the metawrapper is carried out
by a different Java thread. Threads communicate
their status and results to one another by way of
thread-safe work queues.
Data to be translated is passed from one thread to
another, more or less in sequence. The Tokenizer is
responsible for parsing XML input from the
wrappers. The parser thread is where we see the first
application ofRMR. Each time the parser encounters
an OPEN token, the token's absolute XML pathname
is compared to the right hand side of each trigger
rule, for example $A(pheno):=omim/disease. For
each matching trigger rule, a request is enqueued to
the instantiation thread to create a new entity (in our
example, of type "pheno"). The instantiation thread
is responsible for populating the new entities and
applying all RMR replication rules.
Once an entity has been populated, its construction is
almost complete. If the new entity has no potential

relationship to any other entity types defined by the
mediated schema (i.e. the entity is not involved in
any RMR linkage rules), it is passed to the emission
thread and output to the client. If linkage is required,
the linkage thread takes care of creating pointers
from one entity to another.

CURRENT STATUS
The metawrapper and wrappers are currently
deployed as Java servlets. Wrappers have been
written to integrate seven different data sources with
our mediated schema. Supported databases include
LocusLink, MMDB, OMIM, Entrez, BIND9,
GeneTestsI0 and GOI1. Of this list, two data
sources are housed locally and the rest are accessed
over the Internet.
GO and LocusLink provide publicly available
distributions of their data sets. The GO data set is
stored in an Oracle 8.1.6 database, while LocusLink
resides in a PostgreSQL 7.0.3 database. Both
databases are accessed using JDBC 1.1 compliant
drivers. Population and update of local data stores
can be conducted whenever new data sets become
available. Downloads are performed using FTP and
currently take place once per week. Depending on
the data source, data sets are available in several
different forms including XML, ASN. 1 and tab-
delimited or other proprietary formats. Additional
tools and custom software have been written to load
this data into our local databases.
The remaining data sources are accessed via HTTP.
Most Web sites that house biomedical databases
provide a CGI interface to their query engine, though
little or no documentation about its use. Reverse
engineering of existing HTML forms is often
required in order to gain access to this data.
All servlets, both metawrapper and wrappers, reside
on a single machine and are accessed via the same
Web server and servlet engine. Access to mapping
rules is provided via a local copy of the Protege
knowledgebase files. Data mapping rules are read
once when the metawrapper is instantiated, which
occurs during startup of the servlet engine.
Testing is currently under way to evaluate the overall
efficiency of our system and to collect performance
data for later presentation.

DISCUSSION & CONCLUSION
Successes: By generalizing the translation
component and separating it from the data acquisition
layer, complexity of the wrappers was decreased. The
amount of time needed to create or modify a wrapper
is now minimal12. The two tier design of our system
promotes parallel development, with programmers

695

able to work on acquisition and translation
components concurrently and with little coordination.
Overlapping execution of wrapper and metawrapper
functions allows for modularity without sacrificing
performance. The time from beginning to end of
wrapper output can be several seconds. This time is
not wasted as the metawrapper begins simultaneously
processing wrapper results.
Simple and minimal API requirements make
parameter parsing and generation of output
straightforward. The widespread support for Web
servers makes our choice of an interface very
portable. Wrappers can range in complexity from a
simple CGI written in any language to a servlet and
beyond. JDBC makes Java a good choice for
wrapper development because of its support by a
large number of database manufacturers.
XML proved a good choice for representation of both
intermediate and final result sets. XML libraries are
available for most popular programming languages
and both parsing and generation of XML documents
is relatively easy.
Current Challenges: One of the problems we
encountered was data source instability. Wrappers
can break when changes are made to a data source,
thus care must be taken to account for this
eventuality. On at least one occasion, the OMIM
wrapper ceased to function. Upon closer inspection,
we discovered that the "screen-scraping" technique
employed to interface with OMIM's Web site was no
longer correctly parsing HTML pages. This points to
the need for a closer relationship between our
system's developers and the data source providers.
One alternative to remote access is downloading and
accessing data sources locally. In some cases this is
not possible because downloadable data sets are not
provided: In others it is required. Sites such as GO
do not provide an interface that exposes all of the
search options needed to facilitate searching on the
mediated schema. Local data sources are more
reliable, but may often be out of date.
The most difficult challenge in developing this
system was creating the RMR syntax and designing
the general translation portions of the metawrapper
that apply those rules. Fortunately, development of
the translation layer is a one time expenditure.
Future Challenges: We anticipate the need for a
more robust mapping rule syntax. Also, more time
will be required to manage the system as the number
of wrappers and data sources increase. This will not
be a service-free subsystem, but one that requires
attention. Development of tools to monitor and
update local databases will likely be necessary.

The potential for load balancing will become a
necessity, and predictably of major importance to the
system's scalability and performance. Something as
simple as round-robin DNS for metawrapper and
wrapper access could be employed.
In terms of the API, metawrapper queries are
currently restricted to a single URL. It is foreseeable
that our mediated schema may wish to support larger
query strings such as the nucleotide sequences
required for BLAST searching. Use of a single URL
may become cumbersome. A more flexible solution,
such as using the HTT? POST method to pass more
complex queries to the metawrapper and wrappers,
has already been considered.
Future Development: The modular approach to the
metawrapper's design facilitates the possibility of
writing additional tokenizer classes to accommodate
non-XML producing wrappers. It also facilitates the
creation of alternate emitter classes that would
produce output in some form other than XML.
An integral intent in our design is to be able to re-use
wrappers for multiple ontologies without modifying
the wrapper application. Further work in this area
should attempt to exploit this possibility.
As of yet, there has been no talk of a security model
for accessing the metawrapper and wrappers. Both
client authentication and data encryption are areas
that may deserve investigation.

ACKNOWLEDGEMENTS
The authors would like to thank Jiang-Jiang Cheng
for her programming support. Joint funding was
provided by NHGRI and NLM (1ROIHG02288).

REFERENCES
1: MauleyJ, WangLGoodrCinN. AModelSystunforg ie
h nofMoeBcularBiokDbases; BioiafTi,014(7):575-82.

2: Mak P, HaevyHA,T ochP.AModdierDatahlnegmIo
Sysm ofBinalDataAppE tonlineGenetic Dasas.
Proedings ofdteAMIAAmual S osiuni; 2001 Nov3-7;
Washington D.C., USA.

3: Davidso S,IBunwmP,(CmbTVJ,TuinaV,OvaC,WC,WongL
BioKleisli: hlnatingBiomd IC and Ambsis Paclges. In:
letovskyS,editor. Bioinfonsts: Datalseand Systl Bostn:
KluweAcadeficPubishes; 1999.p. 201-212.

4: Rubin D, He,ttMOOhm D, Klein T,AlTm R Autg Data
Aacuis int On ;ogiefinm .ot ReJatioj Dam
SoesUsing DeclaiivvObject DefinitinsandXML Pac Synp
Biocon,ut 2002;:88-99.

5: WolddWideWebConusoriumn(W3). Extsblenvupclqanguage
(XML) 1.0 (second editin) W3C;2000. Availablefinom URL
httpwww.w3.ao11E,OQREC-mi-20001006

6: htpi4ntwstafnfodedk/
7: htpI/wwwsaxpiujectorg/
8: Fische C, LeBlancRCafbngaConpiler. MenloPak (CA):
BeiarrmmingsPublisa; 1988.

9: htlprww.nwnicbinitgov/
10: hUpi/Wwwgeetestslor/
11: httpY/wwwgodabase.org/
12: osmvD.bSoftAsinD;dQuoyPcegACM
CmVug&s 2000S* p. 28-29.

696

